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1 INTRODUCTION: PRACTICE NOTE – EXPERT 
EVIDENCE 
 
Name and Address of Expert  
 
Greg Barron-Gafford, PhD 

Associate Professor and Associate Director 

School of Geography & Development; 

B2 Earthscience, Biosphere 2, College of Science; 

Adjunct Faculty in School of Natural Resources & the Environment 

Office: ENR2 - S439; University of Arizona 

Tucson, AZ 85721, USA 

website: http://www.barrongafford.org/ 

1.520.548.0388 

 

Qualifications of Expert 
 

PhD, Ecosystem Ecology, University of Arizona, 2010 

MS, Natural Resources & Ecology, University of Georgia, 2001 

BS, Environmental Science, Texas Christian University, 1998 

Member, American Geophysical Union 

Member, Ecological Society of America 

Member, American Association of Geographers 

Refer Curriculum Vitae at Attachment 1. 
 

I have authored or co-authored 71 peer-reviewed publications that have been cited 

more than 1,900 times, and I have led research in ecosystem ecology and plant-

atmosphere interactions for more than 17 years. I maintain an active research 

program in assessing the impacts of land use and climatic change in terms of plant 

function, ecosystem response, and local climate conditions. My team, under my 

supervision, produced the first experimental and empirical examination of the 

presence of a heat island effect associated with PV power plants. 
 

Any Private or Business Relationship between the Expert Witness and the Party for 
Whom the Report is Prepared 

None. 
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Instructions 

Written instructions from White & Case Lawyers acting on behalf of Neoen Australia 
Pty Ltd dated 16 April as follows: 

“We would like you to prepare an expert witness statement for the panel in which 
you: 

(a) set out your background and expertise relevant to this issue; 

(b) provide further information in relation to the Arizona study the subject of the 
paper that you co-authored titled The Photovoltaic Heat Island Effect: Larger solar 
power plants increase local temperatures published in Nature Scientific Reports on 
13 October 2016. In particular, we ask that you detail the following: 

(i) brief description of study methodology; 

(ii) radius of the measured heat effects in that study, including those that were 
not outlined in the final paper. Explain the editing process that resulted in 
measured effects being excluded from study; 

(iii) analysis of your conclusions around the measured effects, including simple 
descriptions of energy pathways relevant to the 'heat island effect'; 

(iv) outline contextual factors that may be relevant to the 'heat island effect', 
including environmental factors such as local landscape, humidity, cloud cover, 
fixed or rotating tilt panels, etc; and 

(v) briefly comment, if possible, on your understanding of the possible effect of 
wind on the heat island effect. 

(c) comment on your findings to date in other research work that you have been 
involved with relating to the PVHI effect and co-location of photovoltaics and 
agriculture; 

(d) comment on the general implications of the above studies and literature for the 
Project and the interface between it and any established or future agricultural uses. 
Where possible, please include: 

(i) comparative characteristics of the Arizona and Shepparton sites (e.g. 
presence of vegetation); 

(ii) your opinion as to whether the Project would change any onsite or offsite 
temperature; 

(iii) associated with that, your opinion as to how any change, if identified, would 
impact on bird and insect populations in the area; 

(iv) mitigating factors or measures that exist or could be implemented. 

 

We would also like you to consider the objections to the Project that are relevant to 
your area of expertise and respond to any relevant matters in your witness 
statement.” 
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Facts, Matters and Assumptions 

Facts, matters and assumptions on which opinions expressed in the report are 

based are set out in the report. 

Documents and Materials Taken Into Account 

The documents and any literature or other materials taken into account in preparing 

the report are identified in the report. 

Methodology to prepare Witness Statement 

In preparing this expert report I developed the following process: 

(i) I reviewed the application and noted the submissions raising concerns about 

the potential negative impacts of the proposed solar farm on neighboring 

properties, environmental conditions, and birds, pollinators and other insects. 

(ii) I reviewed the scientific literature on PVHI and collated the findings. 

Examinations, Tests and Investigations 

All examinations, tests, and investigations have been undertaken by me.  

Summary of Opinion 

A summary of opinion is included in the Conclusion. 

Provisional Opinion 

There are no provisional opinions.  

Relevant Questions Outside of Expertise 

There are no matters of relevance outside of my expertise.  

Whether the report is incomplete or inaccurate in any respect 

As far as I am aware the report is not incomplete or inaccurate in any respect.  

Declaration 

I have made all the inquiries that I believe are desirable and appropriate and no 

matters of significance, which I regard as relevant, have to my knowledge been 

withheld from the Panel. 
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2 MY WORK ON THE PHOTOVOLTAIC HEAT ISLAND 
(PVHI) EFFECT  
 

2.1 BACKGROUND AND EXPERTISE RELEVANT TO SOLAR PROJECTS 
I have led a team from January 2013 to present to assess the impacts of land use 

for renewable energy production in terms of plant function, ecosystem response, and 

local climate conditions. My colleagues in this work include faculty and students from 

the Department of Physics and Atmospheric Science and from the Department of 

Hydrology at the University of Arizona. We took continuous measurements 

(described below) for more than 18 months, and I then led a publication of the 

results in a co-authored, peer-reviewed manuscript entitled The Photovoltaic Heat 

Island Effect (PVHI): Larger solar power plants increase local temperatures 

published in Nature Scientific Reports on 13 October 2016. The paper details an 

objective look at the degree to which a PV power plant might alter local climate 

conditions. The paper is attached at Annexure 2. The study was conducted in 

response to requests from the Pima County (Arizona) Chief Building Official for 

Development Services for an assessment of the potential for a PVHI beyond the few 

studies previously presented in the literature. 

 

2.2 FURTHER INFORMATION ON THE PUBLISHED STUDY OF THE PHOTOVOLTAIC 

HEAT ISLAND (PVHI) EFFECT IN ARIZONA 
Brief description of methodology used to determine the presence of a PVHI 
within a solar farm 
Early work on the detection of the presence of a PVHI in solar farms has been 

mostly theoretical or based upon simulated models. Furthermore, past empirical 

work had been limited in scope to a single biome. In order to determine whether or 

not a PV array elevated ambient air temperatures (°C) relative to native 

surroundings, we used shaded and aspirated temperature probes 2.5 m 

(manufacturer details can be found in Barron-Gafford et al. (2016); Figure 1) at the 

following representative sites, all within a 1km2 area:  

- natural landscape (semiarid desert ecosystem); 

- PV solar farm, where the probe was centrally located within the PV array; and 

- within a traditional built environment (parking lot and commercial buildings). 
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Temperature probes were cross-validated for precision (closeness of temperature 

readings across all probes) at the onset and the conclusion of the experiment. We 

set the dataloggers to save the measurements of temperature at 30-minute intervals 

throughout a 24-hour day. We installed the weather stations in April 2014 and began 

simultaneously monitoring the three sites throughout an entire yearlong cycle to 

capture variations in temperatures across seasonal periods. We defined a PVHI 

effect as the difference in ambient air temperature between the PV solar farm and 

the natural landscape. 

 

 

 
 
 
 
 

Figure 1. Weather stations were 
used to measure the local 
microclimate of an area. Each 
weather station used captured (1) 
ambient air temperature, (2) soil 
temperature, (3) wind speed, (4) 
wind direction, and (5) 
precipitation. All data were 
monitored every 30 minutes, and 
average conditions were saved by 
the datalogger. Cumulative 
precipitation was summed for 
each 30 minute period.  
 
This type of weather station was 
installed at each of three sites: the 
photovoltaic array of a solar farm, 
the natural landscape, and a 
parking lot, to represent a typical 
built environment. 
 
 
Photo credit: Campbell Scientific 
Instruments 
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Results illustrating the presence of a PVHI within a solar farm 
Ultimately, we found that air temperatures within a PV solar farm are higher than 

those in nearby natural settings, and we referred to this as the PVHI effect (Figure 

2). We found the PVHI effect to be much greater within the solar farm at night, with 

the greatest impacts being within the spring and summer months. Additionally, we 

found that presence of a PVHI effect to be much less significant during the day, and 

that the effects were least prominent in the winter and fall, regardless of time of day. 

 

 

Figure 2. Through continuous 
monitoring of air temperatures 
within the center of a solar field for 
more than a year, we detected the 
presence of a PVHI effect. The 
effect was greatest in the 
nighttime hours (black bars 
indicate averages at midnight) and 
lowest during the day (white bars). 
The degree of the PVHI effect in 
the center of the solar farm was 
also seasonally variable with the 
warm season months 
experiencing greater impacts than 
the cool season months. 
 
 
Figure recreated from Barron-
Gafford et al. (2016). 



	

	 9	

Analysis of conclusions on the presence of a PVHI within a solar farm 
As described in Barron-Gafford et al. (2016; in Annexure 2), incoming sun energy 

typically is either reflected back to the atmosphere or absorbed, stored, and later re-

radiated in the form of latent or sensible heat. Within natural ecosystems, vegetation 

reduces heat gain and storage in soils by creating surface shading; this also occurs 

within PV arrays, but less so in the rows between the panels. Energy absorbed by 

vegetation and surface soils can be released as latent heat in the transition of liquid 

water to water vapor to the atmosphere through water loss from soils (evaporation) 

and vegetation (transpiration). This heat-dissipating latent energy exchange is 

dramatically reduced within a PV installation that does not have an “understory” of 

vegetation. PV panels convert ~20% of absorbed energy into usable electricity and 

also allow some light energy to pass, which, in unvegetated soils will lead to greater 

heat absorption. This greater sensible heat efflux from the soil becomes trapped 

under the PV panels, much like clouds trap the energy radiating from the Earth’s 

surface. On cloudy nights, air temperatures do not cool off as much as they do on 

clear nights. This is the same principle in the PVHI, and I believe the reason that the 

PVHI dissipates so quickly as one moves away from the edge of the panels. Under 

the panels, it is analogous to a cloudy night, and away from the array, where those 

panels are absent, conditions are analogous to a clear night sky.  

 

2.3 DETERMINING THE SPATIAL EXTENT OF THE PVHI 
Methods for measuring the radius of the measured heat effects in the study  
In addition to measuring the degree of the photovoltaic heat island (PVHI) effect 

within the solar farm, we measured the extent to which the heat island effect 

extended outward from the PV array (Figure 3). We installed the weather stations 

with the same air temperature probe described in Section 2.2 to measure 

temperature:  

- inside the array at 20m and 40m in from the edge of the array; 

- at the edge of the array (0m); and 

- outside the array at 10, 20, 30, 40, and 50m out from the edge of the array.  
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We installed these weather stations in April 2015, and we maintained them 

throughout a six-month period to capture variation in the relative differences in 

temperatures across seasonal periods. While this was a part of our original study 

design once we had identified the presence of the PVHI effect, this data and 

associated graphic were cut from our final manuscript by the Nature Scientific 

Reports editor due to space constraints. This is quite unfortunate because the 

distance of the PVHI effect is one of the primary questions I continue to receive 

since the publication of this manuscript. 

 

 

 

Figure 3. Locations of additional measures of air temperature are marked with 
yellow triangles. Stations were placed inside the array at 20m and 40m in from the 
edge of the array, at the edge of the array (0m), and outside the array at 10, 20, 
30, 40, and 50m out from the edge of the array to quantify the spatial extent of the 
PVHI effect. 
 



	

	 11	

Results on the radius of the measured heat effects 

We found that the PVHI was indistinguishable from air temperatures over native 

vegetation when measured at a distance of 30m from the edge of the PV array 

(Figure 4). This pattern held true for both daytime and nighttime conditions. Because 

the PV panels themselves trap the energy from diffuse sunlight that was able to 

reach the ground underneath them, air temperatures remain elevated within a PV 

array. As you leave this “overstory” of PV panels, energy is able to radiate back 

towards the atmosphere, as it does in a natural setting, and the PVHI quickly 

dissipates.  

 

Figure 4. Measures of air temperature within (negative values on the X-axis) and 
outside of the PV array (positive values on the X-axis) were used to quantify the 
spatial extent of the PVHI effect. The dotted line represents the edge of the PV 
array.  
 

The solid line at 0 on the Y-axis illustrates when there is no difference between a 
measurement along the transect and ambient air temperatures over native 
vegetation. At night, the PVHI effect of 3-4oC directly above the solar panels is 
reduced to 1.5 oC at 10m and to 0oC at 30m. There is a lesser PVHI effect by day. 
Error bars represent 1 standard error around the mean. 
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3 COMMENT ON THE GENERAL IMPLICATIONS OF 
THE ABOVE AND OTHER STUDIES IN THE 
LITERATURE 
 
3.1 CONSIDERATION OF OTHER TECHNICAL PAPERS EXAMINING THE PVHI 
EFFECT 
One of the other primary research articles in the literature on the presence and 

extent of the PVHI comes from Fthenakis and Yu (2013). This paper links both field 

data and computational fluid dynamics simulations. Ultimately, Fthenakis and Yu 

found that (i) ambient temperatures can be up to 1.9oC greater within a solar farm, 

and (ii) temperatures dissipate rapidly with increased distance from the solar farm, 

with no detectable effect by at about 300m (Figure 5). In my opinion, the approach 

and simulations appear sound. However, my critique is tied to the accuracy of the 

sensors used. For the paper published by Fthenakis and Yu (2013), the accuracy of 

the Hawk weather station air temperature probe is only + 0.5°C, but no data on the 

uncertainty or variation are presented. Please see:	

https://www.weatherhawk.com/wp-content/uploads/2016/06/Signature-Series-

Comprehensive-Manual-V7.pdf 

 

Figure 5.  Measures of air temperature within (negative values on the X-axis) and 
outside of the PV array (positive values on the X-axis), as presented by Fthenakis 
and Yu (2013) to quantify the spatial extent of the PVHI effect. The solid line at 0 on 
the X-axis represents the edge of the PV array. The data illustrate that the PVHI 
dissipates rapidly with increasing distance away from the edge of the PV array. 
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In my opinion, then, if we added this uncertainty to their Figure 8 (shown here as 

Figure 5 within this report), all measures of air temperature beyond 200m may 

actually be indistinguishable from ambient air temperatures. Additionally, I do not 

consider “Hawk 4” to be evidence of a spike in the PVHI away from the PV array. 

Fthenakis and Yu suggest that the higher values at Hawk 4 might be due to the fact 

that they are on the downwind side of the solar farm. However, I interpret this more 

as a singular measure that is anonymously higher than those around it, which are on 

a downward trend as one moves away from the array. Finally, there are no 

measures of uncertainty on any of these measurements. From maintaining our 

research sites for more than a year, I know there are day-to-day variations in 

temperature. Fthenakis and Yu also dismiss another one of their sensors as showing 

“higher temperatures likely due to a calibration inaccuracy”, which leads me to 

wonder if the same might be true for Hawk 4. Taken together, I wonder if this is 

anything more than an anomaly.  

 

More recently, Yang et al. (2017) have added an additional manuscript to this body 

of literature through a detailed suite of measurements on air and soil temperatures at 

depth. Ultimately, Yang et al. found that the degree of PVHI in terms of daytime air 

temperatures was nearly absent during winter, but during the other seasons the 

daytime air temperature in the solar farm was higher than that in areas without PV. 

As in our study, the maximum PVHI effect was detected during their summer. Yang 

et al. found that the PVHI was present during nighttime hours during all four 

seasons; again this parallels our own research, which examined the seasonal 

variation in daytime and nighttime PVHI effect. Yang et al. did not mention any data 

on the spatial extent and dissipation of the PVHI effect in their paper. 

 

3.2 CONTEXTUAL FACTORS THAT MAY BE RELEVANT TO THE PVHI EFFECT 
To date, no empirical or experimental studies have explicitly examined correlations 

between environmental factors such as local landscape, humidity, cloud cover, fixed 

or rotating tilt panels, and either the degree or spatial extent of a PVHI. However, we 

can look to literature on the analogous Urban Heat Island (UHI) effect and on 

Human Thermal Comfort (HTC) for potential indicators. Increases in wind speed has 

been shown to reduce the UHI (Rajagopalan et al. 2014), including work conducted 
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in Australia (Santamouris et al. 2017), however, there are less clear patterns in 

terms of the impacts of humidity on the UHI. Increased cloud cover is likely to 

exacerbate the PVHI because clouds trap any re-radiation of sun energy back 

towards the atmosphere, whether in a built or natural environment. Importantly, 

recent work has shown that the UHI effect is greater in locations with higher 

background temperatures (Taha 2017). 

 

3.3 POSSIBLE EFFECT OF PV ANGLE TILT ON THE PVHI EFFECT  
To date, no empirical or experimental studies have investigated the impacts of PV 

panel angle on the degree of PVHI within an array. A greater degree of tilt would 

allow for greater loss of heat trapped under the panels, but this should be 

considered in concert with potential reflection from panels at the end of the day, in 

which a more severe angle might lead to greater horizontal reflection. Our work 

(Barron-Gafford et al. 2016) was conducted within a PV array in which panels 

pivoted east-to-west tracking the sun, but maximum angles only approached 45o. 

The work of Yang et al. (2017), which found a similar contained PVHI effect within a 

PV array, was conducted within a PV array with panels at a fixed tilt angle of 36o, 

and the panels within the solar farm studied by Fthenakis & Yu (2013) had a tilt 

angle of 25o. I have been informed that the PV panels in the proposed Project will be 

single-axis tracking and could, therefore, be left at an angle to dissipate heat 

overnight. Together, the existing body of research suggests to me that further 

research on the linkage between PV angle tilt and the degree of the PVHI warrants 

more study, but I would predict that maintaining a PV panel angle overnight of 45-

50o would aid in nighttime dissipation of any PVHI effect that is created within the 

array.  

 

3.4 FINDINGS RELATING TO THE PVHI EFFECT AND CO-LOCATION OF 

PHOTOVOLTAICS AND RESTORATION OR AGRICULTURE (AGRIVOLTAICS) 
Grass + Photovoltaics  
The notion of “either-or” between green spaces and solar farms has been 

progressively more challenged in recent years as companies move towards either 

restoring solar farms with grasses after installation or leaving grasses in place 

instead of blading the soil during installation. Co-locating grasses under PV arrays 
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can yield multiple ecosystem services (tangible and non-tangible amenities) 

including continued carbon dioxide sequestration from our atmosphere, localized 

cooling from the transpiration of the plants, grazing forage, and storm-water 

regulation. In my team’s own preliminary work on the effects of revegetating PV 

solar farms with grasses, we found significant cooling of the local atmosphere 

(Figure 6). In addition to illustrating the positive effect of vegetation on PV solar farm 

temperatures, the fact that the plants did so well in such close proximity to the PV 

panels (around and under the panels) suggests to me a lack of a negative impact of 

PV installations on local vegetation.  

  

 

Figure 6. Measures of air temperature within a PV array restored with an 
understory of grasses versus a PV installation with only bare soil. The dotted line 
at 0 on the Y-axis illustrates when there is no difference between these 
measurements, and a negative value indicates the cooling effect of having a PV 
array restored with grasses. At night, the PVHI effect was cooled by about 1.5 oC, 
and the daytime PVHI effect was reduced by up to 7oC within the solar array. The 
reduced impacts in the early evening are likely due to the vegetation being ‘shut 
down’ for the day and, therefore, not providing any transpirational cooling. 
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Closer to the proposed Project site, co-location of grazing of sheep beneath an 

overstory of PV panels have illustrated a lack of quantifiable evidence of detrimental 

effects on livestock: 

https://parkessolarfarm.com.au/Library/sheep-grazing-under-neoen-solar-farm/ 

 

I understand that grasses will be retained at the proposed Project site. While no 

published research to date measures the impacts at such a large spatial footprint, I 

believe that leaving the grasses under the panels should greatly reduce the PVHI 

effect within the solar farm, which will serve to only assist in any reductions in the 

spatial extent of the PVHI effect outside of the array.  

 
Agriculture + Photovoltaics  
Recently, my colleagues and I have been investigating a novel approach to co-

located “green” agriculture and “grey” solar PV infrastructure, where crops are grown 

in the shade of the PV panels within a solar farm – a practice we call ‘agrivoltaics’. 

We suggest that this novel energy and food generating ecosystem may become an 

important - but as yet under investigated - mechanism for maximizing crop yields, 

efficiently delivering water to plants, and generating renewable energy (Figure 7). 

Similar pilot studies in France and Germany have also suggested that this co-

location can have beneficial effects on a balanced approach to food and renewable 

energy production. Beyond illustrating innovative applications in renewable energy 

systems, the co-location of an agriculture and PV arrays suggests that there are no 

ill effects of PV arrays on food production. Through our extensive measures of 

photosynthetic rates, transpirational water loss, and total fruit production, we have 

found no evidence to suggest that plants overheat or lose their potential to function 

by being in (extremely) close proximity to PV panels. In fact, in many cases 

production is increased, and water use efficiency becomes much higher because the 

solar panels reduced direct sunlight on the soils that drive the evaporation of 

irrigated waters.  

Additionally, we have found that PV panels in a traditional ground-mounted array 

were significantly warmer in the day and experienced greater within-day variation 

than panels over an agrivoltaic understory, illustrating the cooling effect of 

vegetation. We attribute these lower daytime temperatures in PV panels in the 
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agrivoltaic system to the greater balance of latent heat energy exchange from plant 

transpiration relative to sensible heat exchange from radiation off bare soil (the 

typical installation method). Across the core growing season, PV panels in an 

agrivoltaic system were ~ 8.9+0.2oC cooler in the day. These data suggest that even 

a vegetative barrier can significantly cool panels and the local atmosphere below 

those caused by the PVHI effect. 

 

 

Figure 7. The co-location of agricultural under an elevated ‘overstory’ of PV panels 
has demonstrated increased production of some crop species (tomatoes, carrots, 
cabbages, chiltepin peppers, and kale) and increased water savings in the irrigation 
needed for additional spring and summer crops including red and yellow chards, 
purple, tepary, and cow beans, cilantro, and Japanese eggplant.  
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 3.5 GENERAL IMPLICATIONS OF THE ABOVE STUDIES AND LITERATURE FOR 

THE PROPOSED PROJECT  
 

Comparative characteristics of the Arizona and Shepparton sites  
Given recent work has shown that the Urban Heat Island effect is greater in 

locations with higher background temperatures (Taha 2017), it is important to 

consider comparative characteristics of the Arizona site, where much of my work has 

been conducted, and the Shepparton site under consideration here. Average climate 

data for Tucson (https://www.usclimatedata.com/climate/tucson/arizona/united-

states/usaz0247) and Shepparton 

(http://www.bom.gov.au/climate/averages/tables/cw_081125.shtml) illustrate that 

Tucson is consistently warmer in terms of maximum and minimum temperatures in 

both the winter and summer seasons. Also noteworthy are vegetative differences in 

terms of understory vegetation. The installations in the Southwestern USA often are 

mechanically bladed to remove all vegetation, where as the proposed Project site 

will retain grasses in the understory. As noted above (Figure 6), this understory 

vegetation can provide significant cooling to mitigate the PVHI effect within a PV 

array. As such, we are working to adapt this type of practice more often here in the 

US installations.  

 

Taken together with the results of Taha 2017, I would predict that the degree of 

PVHI within Shepparton might be lower than the values we measured in Tucson 

because of the differences in background temperatures and vegetation.  

 

 

 

Table 1. A comparison of climatic differences between Tucson, Arizona, USA and 
Shepparton, Victoria, Australia, underscores the higher average temperatures of the 
Southwestern USA, which may lead to an elevated PVHI effect in the region. 
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Potential for associated impact on bird and insect populations in the area 
I have no experience in detecting ill effects on bird or insect populations in or around 

PV arrays, other than those that stem from a lack of vegetation. The fact that 

understory grass vegetation will be retained here should actually help to maintain 

local insect and bird abundances and biodiversity. Still, bolstering bird and insect 

populations could be achieved through either targeted revegetation efforts around 

the PV array or through co-location of PV and pollinator friendly vegetation, as has 

been carried out in multiple locations (Figure 8, for example). Multiple example 

stories are listed within the References section (5.2) of this report. 

 

Beyond illustrating innovative applications in renewable energy systems, the co-

location of pollinator habitat and grazing with PV arrays suggests that there are no ill 

effects of PV arrays on this vegetation or animals. Plants do not overheat or lose 

their potential to function by being in (extremely) close proximity to PV panels. Given 

that our research has shown that the increase in temperatures due to the PVHI 

effect do not extend past 30m, I do believe that off-site impacts on birds and insets 

are highly unlikely. Revegetating with native and locally adapted species will ensure 

that the solar farm does not contribute to any insect pest outbreaks that could 

negatively impact local agricultural areas. 

 

Figure 8. The co-location of grasses and native or locally adapted pollinator species 
under an ‘overstory’ of PV panels has demonstrated increased abundance of bird 
populations and locally important pollinator species.  
Photo of the Westmill Solar Park in Watchfield, England; Photo credit: Guy Parker 
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4 CONCLUSIONS 
 
WILL THE PROJECT CHANGE ANY ONSITE OR OFFSITE TEMPERATURE? 
In summary, both my own research and that of independent groups with which I am 

not affiliated have shown that solar farms can create PVHI effect, but the spatial 

extent of the effect is constrained. The PVHI effect is largely driven by the absence 

of vegetation and the vegetation’s potential to cool the atmosphere through 

transpirational water loss. Bolstering the presence of vegetation through co-location 

(as described in Section 3.4) or having landscaping around the solar farm will 

mitigate the PVHI effect. My own research on adding grasses back into a solar farm 

showed the impacts of grasses on reducing the PVHI effect within a solar array. To-

date, no study has published research on these patterns at such large scales, but I 

have no reason to believe that there will be a different outcome when extrapolated in 

scale. The increased practice of leaving or re-introducing vegetation within PV solar 

farms is acknowledging the multiple benefits that come from this practice.  

 

Adding a vegetative buffer to the study site does not seem necessary to creating the 

dissipation of the PVHI effect as one moves outside of the PV array, as neither of 

the studies I have conducted or those described by Fthenakis and Yu (2013) 

monitored solar farms with a vegetative buffer.  

 

I have made all of the enquiries that I believe are desirable and appropriate and that 

no matters of significance which I regard as relevant have to my knowledge, been 

withheld from the Panel. 

 

 
 

Greg Barron-Gafford, PhD 

University of Arizona 

3 May 2018 
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The Photovoltaic Heat Island 
Effect: Larger solar power plants 
increase local temperatures
Greg A. Barron-Gafford1,2, Rebecca L. Minor1,2, Nathan A. Allen3, Alex D. Cronin4, 
Adria E. Brooks5 & Mitchell A. Pavao-Zuckerman6

While photovoltaic (PV) renewable energy production has surged, concerns remain about whether 
or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient 
temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV 
plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and 
reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work 
on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical 
work has been limited in scope to a single biome. Because there are still large uncertainties surrounding 
the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned 
three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands 
at night, which is in direct contrast to other studies based on models that suggested that PV systems 
should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and 
identifying mitigation strategies are key in supporting decision-making regarding PV development, 
particularly in semiarid landscapes, which are among the most likely for large-scale PV installations.

Electricity production from large-scale photovoltaic (PV) installations has increased exponentially in recent dec-
ades1–3. This proliferation in renewable energy portfolios and PV powerplants demonstrate an increase in the 
acceptance and cost-effectiveness of this technology4,5. Corresponding with this upsurge in installation has been 
an increase in the assessment of the impacts of utility-scale PV4,6–8, including those on the efficacy of PV to offset 
energy needs9,10. A growing concern that remains understudied is whether or not PV installations cause a “heat 
island” (PVHI) effect that warms surrounding areas, thereby potentially influencing wildlife habitat, ecosystem 
function in wildlands, and human health and even home values in residential areas11. As with the Urban Heat 
Island (UHI) effect, large PV power plants induce a landscape change that reduces albedo so that the modified 
landscape is darker and, therefore, less reflective. Lowering the terrestrial albedo from ~20% in natural deserts12 
to ~5% over PV panels13 alters the energy balance of absorption, storage, and release of short- and longwave 
radiation14,15. However, several differences between the UHI and potential PVHI effects confound a simple com-
parison and produce competing hypotheses about whether or not large-scale PV installations will create a heat 
island effect. These include: (i) PV installations shade a portion of the ground and therefore could reduce heat 
absorption in surface soils16, (ii) PV panels are thin and have little heat capacity per unit area but PV modules 
emit thermal radiation both up and down, and this is particularly significant during the day when PV modules 
are often 20 °C warmer than ambient temperatures, (iii) vegetation is usually removed from PV power plants, 
reducing the amount of cooling due to transpiration14, (iv) electric power removes energy from PV power plants, 
and (v) PV panels reflect and absorb upwelling longwave radiation, and thus can prevent the soil from cooling as 
much as it might under a dark sky at night.

Public concerns over a PVHI effect have, in some cases, led to resistance to large-scale solar development. By 
some estimates, nearly half of recently proposed energy projects have been delayed or abandoned due to local 
opposition11. Yet, there is a remarkable lack of data as to whether or not the PVHI effect is real or simply an issue 
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associated with perceptions of environmental change caused by the installations that lead to “not in my back-
yard” (NIMBY) thinking. Some models have suggested that PV systems can actually cause a cooling effect on the 
local environment, depending on the efficiency and placement of the PV panels17,18. But these studies are limited 
in their applicability when evaluating large-scale PV installations because they consider changes in albedo and 
energy exchange within an urban environment (rather than a natural ecosystem) or in European locations that 
are not representative of semiarid energy dynamics where large-scale PV installations are concentrated10,19. Most 
previous research, then, is based on untested theory and numerical modeling. Therefore, the potential for a PHVI 
effect must be examined with empirical data obtained through rigorous experimental terms.

The significance of a PVHI effect depends on energy balance. Incoming solar energy typically is either 
reflected back to the atmosphere or absorbed, stored, and later re-radiated in the form of latent or sensible heat 
(Fig. 1)20,21. Within natural ecosystems, vegetation reduces heat gain and storage in soils by creating surface shad-
ing, though the degree of shading varies among plant types22. Energy absorbed by vegetation and surface soils can 
be released as latent heat in the transition of liquid water to water vapor to the atmosphere through evapotranspi-
ration – the combined water loss from soils (evaporation) and vegetation (transpiration). This heat-dissipating 
latent energy exchange is dramatically reduced in a typical PV installation (Fig. 1 transition from A-to-B), poten-
tially leading to greater heat absorption by soils in PV installations. This increased absorption, in turn, could 
increase soil temperatures and lead to greater sensible heat efflux from the soil in the form of radiation and con-
vection. Additionally, PV panel surfaces absorb more solar insolation due to a decreased albedo13,23,24. PV panels 
will re-radiate most of this energy as longwave sensible heat and convert a lesser amount (~20%) of this energy 
into usable electricity. PV panels also allow some light energy to pass, which, again, in unvegetated soils will 
lead to greater heat absorption. This increased absorption could lead to greater sensible heat efflux from the soil 
that may be trapped under the PV panels. A PVHI effect would be the result of a detectable increase in sensible 
heat flux (atmospheric warming) resulting from an alteration in the balance of incoming and outgoing energy 
fluxes due to landscape transformation. Developing a full thermal model is challenging17,18,25, and there are large 
uncertainties surrounding multiple terms including variations in albedo, cloud cover, seasonality in advection, 
and panel efficiency, which itself is dynamic and impacted by the local environment. These uncertainties are 
compounded by the lack of empirical data.

We addressed the paucity of direct quantification of a PVHI effect by simultaneously monitoring three sites 
that represent a natural desert ecosystem, the traditional built environment (parking lot surrounded by com-
mercial buildings), and a PV power plant. We define a PVHI effect as the difference in ambient air temperature 
between the PV power plant and the desert landscape. Similarly, UHI is defined as the difference in temperature 
between the built environment and the desert. We reduced confounding effects of variability in local incoming 
energy, temperature, and precipitation by utilizing sites contained within a 1 km area.

At each site, we monitored air temperature continuously for over one year using aspirated temperature probes 
2.5 m above the soil surface. Average annual temperature was 22.7 +  0.5 °C in the PV installation, while the nearby 
desert ecosystem was only 20.3 +  0.5 °C, indicating a PVHI effect. Temperature differences between areas varied 
significantly depending on time of day and month of the year (Fig. 2), but the PV installation was always greater 
than or equal in temperature to other sites. As is the case with the UHI effect in dryland regions, the PVHI effect 
delayed the cooling of ambient temperatures in the evening, yielding the most significant difference in overnight 
temperatures across all seasons. Annual average midnight temperatures were 19.3 +  0.6 °C in the PV installation, 
while the nearby desert ecosystem was only 15.8 +  0.6 °C. This PVHI effect was more significant in terms of actual 
degrees of warming (+ 3.5 °C) in warm months (Spring and Summer; Fig. 3, right).

Figure 1. Illustration of midday energy exchange. Assuming equal rates of incoming energy from the sun, a 
transition from (A) a vegetated ecosystem to (B) a photovoltaic (PV) power plant installation will significantly 
alter the energy flux dynamics of the area. Within natural ecosystems, vegetation reduces heat capture and 
storage in soils (orange arrows), and infiltrated water and vegetation release heat-dissipating latent energy fluxes 
in the transition of water-to-water vapor to the atmosphere through evapotranspiration (blue arrows). These 
latent heat fluxes are dramatically reduced in typical PV installations, leading to greater sensible heat fluxes (red 
arrows). Energy re-radiation from PV panels (brown arrow) and energy transferred to electricity (purple arrow) 
are also shown.
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In both PVHI and UHI scenarios, the greater amount of exposed ground surfaces compared to natural sys-
tems absorbs a larger proportion of high-energy, shortwave solar radiation during the day. Combined with min-
imal rates of heat-dissipating transpiration from vegetation, a proportionally higher amount of stored energy is 
reradiated as longwave radiation during the night in the form of sensible heat (Fig. 1)15. Because PV installations 
introduce shading with a material that, itself, should not store much incoming radiation, one might hypothesize 
that the effect of a PVHI effect would be lesser than that of a UHI. Here, we found that the difference in evening 
ambient air temperature was consistently greater between the PV installation and the desert site than between the 
parking lot (UHI) and the desert site (Fig. 3). The PVHI effect caused ambient temperature to regularly approach 
or be in excess of 4 °C warmer than the natural desert in the evenings, essentially doubling the temperature 
increase due to UHI measured here. This more significant warming under the PVHI than the UHI may be due 
to heat trapping of re-radiated sensible heat flux under PV arrays at night. Daytime differences from the natural 
ecosystem were similar between the PV installation and urban parking lot areas, with the exception of the Spring 
and Summer months, when the PVHI effect was significantly greater than UHI in the day. During these warm 
seasons, average midnight temperatures were 25.5 +  0.5 °C in the PV installation and 23.2 +  0.5 °C in the parking 
lot, while the nearby desert ecosystem was only 21.4 +  0.5 °C.

The results presented here demonstrate that the PVHI effect is real and can significantly increase temperatures 
over PV power plant installations relative to nearby wildlands. More detailed measurements of the underlying 
causes of the PVHI effect, potential mitigation strategies, and the relative influence of PVHI in the context of the 
intrinsic carbon offsets from the use of this renewable energy are needed. Thus, we raise several new questions 
and highlight critical unknowns requiring future research.

What is the physical basis of land transformations that might cause a PVHI?
We hypothesize that the PVHI effect results from the effective transition in how energy moves in and out of a PV 
installation versus a natural ecosystem. However, measuring the individual components of an energy flux model 
remains a necessary task. These measurements are difficult and expensive but, nevertheless, are indispensable 
in identifying the relative influence of multiple potential drivers of the PVHI effect found here. Environmental 

Figure 2. Average monthly ambient temperatures throughout a 24-hour period provide evidence of a 
photovoltaic heat island (PVHI) effect. 
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conditions that determine patterns of ecosystem carbon, energy, and water dynamics are driven by the means 
through which incoming energy is reflected or absorbed. Because we lack fundamental knowledge of the changes 
in surface energy fluxes and microclimates of ecosystems undergoing this land use change, we have little ability to 
predict the implications in terms of carbon or water cycling4,8.

What are the physical implications of a PVHI, and how do they vary by region?
The size of an UHI is determined by properties of the city, including total population26–28, spatial extent, and the 
geographic location of that city29–31. We should, similarly, consider the spatial scale and geographic position of 
a PV installation when considering the presence and importance of the PVHI effect. Remote sensing could be 
coupled with ground-based measurements to determine the lateral and vertical extent of the PVHI effect. We 
could then determine if the size of the PVHI effect scales with some measure of the power plant (for example, 
panel density or spatial footprint) and whether or not a PVHI effect reaches surrounding areas like wildlands and 
neighborhoods. Given that different regions around the globe each have distinct background levels of vegetative 
ground cover and thermodynamic patterns of latent and sensible heat exchange, it is possible that a transition 
from a natural wildland to a typical PV power plant will have different outcomes than demonstrated here. The 
paucity in data on the physical effects of this important and growing land use and land cover change warrants 
more studies from representative ecosystems.

What are the human implications of a PVHI, and how might we mitigate these 
effects?
With the growing popularity of renewable energy production, the boundaries between residential areas and 
larger-scale PV installations are decreasing. In fact, closer proximity with residential areas is leading to increased 
calls for zoning and city planning codes for larger PV installations32,33, and PVHI-based concerns over potential 
reductions in real estate value or health issues tied to Human Thermal Comfort (HTC)34. Mitigation of a PVHI 
effect through targeted revegetation could have synergistic effects in easing ecosystem degradation associated 
with development of a utility scale PV site and increasing the collective ecosystem services associated with an 
area4. But what are the best mitigation measures? What tradeoffs exist in terms of various means of revegetating 
degraded PV installations? Can other albedo modifications be used to moderate the severity of the PVHI?

Figure 3. (Left) Average monthly levels of Photovoltaic Heat Islanding (ambient temperature difference 
between PV installation and desert) and Urban Heat Islanding (ambient temperature difference between 
the urban parking lot and the desert). (Right) Average night and day temperatures for four seasonal periods, 
illustrating a significant PVHI effect across all seasons, with the greatest influence on ambient temperatures at 
night.
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To fully contextualize these findings in terms of global warming, one needs to consider the relative signifi-
cance of the (globally averaged) decrease in albedo due to PV power plants and their associated warming from the 
PVHI against the carbon dioxide emission reductions associated with PV power plants. The data presented here 
represents the first experimental and empirical examination of the presence of a heat island effect associated with 
PV power plants. An integrated approach to the physical and social dimensions of the PVHI is key in supporting 
decision-making regarding PV development.

Methods
Site Description. We simultaneously monitored a suite of sites that represent the traditional built urban 
environment (a parking lot) and the transformation from a natural system (undeveloped desert) to a 1 MW 
PV power plant (Fig. 4; Map data: Google). To minimize confounding effects of variability in local incoming 
energy, temperature, and precipitation, we identified sites within a 1 km area. All sites were within the boundaries 
of the University of Arizona Science and Technology Park Solar Zone (32.092150°N, 110.808764°W; elevation: 
888 m ASL). Within a 200 m diameter of the semiarid desert site’s environmental monitoring station, the area is 
composed of a sparse mix of semiarid grasses (Sporobolus wrightii, Eragrostis lehmanniana, and Muhlenbergia 
porteri), cacti (Opuntia spp. and Ferocactus spp.), and occasional woody shrubs including creosote bush (Larrea 
tridentata), whitethorn acacia (Acacia constricta), and velvet mesquite (Prosopis velutina). The remaining area is 
bare soil. These species commonly co-occur on low elevation desert bajadas, creosote bush flats, and semiarid 
grasslands. The photovoltaic installation was put in place in early 2011, three full years prior when we initiated 
monitoring at the site. We maintained the measurement installations for one full year to capture seasonal var-
iation due to sun angle and extremes associated with hot and cold periods. Panels rest on a single-axis tracker 
system that pivot east-to-west throughout the day. A parking lot with associated building served as our “urban” 
site and is of comparable spatial scale as our PV site.

Monitoring Equipment & Variables Monitored. Ambient air temperature (°C) was measured with a 
shaded, aspirated temperature probe 2.5 m above the soil surface (Vaisala HMP60, Vaisala, Helsinki, Finland in 
the desert and Microdaq U23, Onset, Bourne, MA in the parking lot). Temperature probes were cross-validated 
for precision (closeness of temperature readings across all probes) at the onset of the experiment. Measurements 
of temperature were recorded at 30-minute intervals throughout a 24-hour day. Data were recorded on a 
data-logger (CR1000, Campbell Scientific, Logan, Utah or Microstation, Onset, Bourne, MA). Data from this 

Figure 4. Experimental sites. Monitoring a (1) natural semiarid desert ecosystem, (2) solar (PV) 
photovoltaic installation, and (3) an “urban” parking lot – the typical source of urban heat islanding – 
within a 1 km2 area enabled relative control for the incoming solar energy, allowing us to quantify variation 
in the localized temperature of these three environments over a year-long time period. The Google Earth 
image shows the University of Arizona’s Science and Technology Park’s Solar Zone.
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instrument array is shown for a yearlong period from April 2014 through March 2015. Data from the parking lot 
was lost for September 2014 because of power supply issues with the datalogger.

Statistical analysis. Monthly averages of hourly (on-the-hour) data were used to compare across the nat-
ural semiarid desert, urban, and PV sites. A Photovoltaic Heat Island (PVHI) effect was calculated as differences 
in these hourly averages between the PV site and the natural desert site, and estimates of Urban Heat Island 
(UHI) effect was calculated as differences in hourly averages between the urban parking lot site and the natural 
desert site. We used midnight and noon values to examine maximum and minimum, respectively, differences 
in temperatures among the three measurement sites and to test for significance of heat islanding at these times. 
Comparisons among the sites were made using Tukey’s honestly significant difference (HSD) test35. Standard 
errors to calculate HSD were made using pooled midnight and noon values across seasonal periods of winter 
(January-March), spring (April-June), summer (July-September), and fall (October-December). Seasonal anal-
yses allowed us to identify variation throughout a yearlong period and relate patterns of PVHI or UHI effects 
with seasons of high or low average temperature to examine correlations between background environmental 
parameters and localized heat islanding.
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